How Biomimicry is Inspiring Human Innovation

7

The first thing you notice about the entomology collections department, Lepidoptera division, at the Smithsonian’s Museum of Natural History is a faint, elusively familiar odor. Mothballs. I briefly contemplated the cosmic irony of mothballs in a room full of moths (and butterflies, a lineage of moths evolved to fly during the day) before turning to Bob Robbins, a research entomologist. “There are many insects that will eat dried insects,” he said, “so traditionally you kept those pests out using naphthalene, or mothballs.”


The mothballs have been phased out (in favor of freezing new specimens to kill any pests), but that lingering smell, as well as the endless drawers of insects pinned under glass and carefully arrayed in row after row of steel cabinets for taxonomic posterity, only heightens the sense of age in the hushed chamber. Time seems to stand as still as the millions of specimens.

But pore through those drawers, through the precisely spaced squadrons of swallowtails and sunset moths, and a different idea begins to form: This is not a dormant repository, but a laboratory that investigates an extraordinarily successful enterprise. Over some 150 million years, these “products” have been ruthlessly prototyped, market-tested, upgraded, refined and otherwise made new and improved as the world around them changed. Each of these fragile specimens is a package of innovation waiting to be understood and adapted.

This is the idea behind the increasingly influential discipline of biomimicry: that we human beings, who have been trying to make things for only the blink of an evolutionary eye, have a lot to learn from the long processes of natural selection, whether it’s how to make a wing more aerodynamic or a city more resilient or an electronic display more vibrant. More than a decade ago, an MIT grad named Mark Miles was dabbling in the field of micro-electromechanical and materials processing. As he paged through a science magazine, he was stopped by an article on how butterflies generate color in their wings. The brilliant iridescent blue of the various Morpho species, for example, comes not from pigment, but from “structural color.” Those wings harbor a nanoscale assemblage of shingled plates, whose shape and distance from one another are arranged in a precise pattern that disrupts reflective light wavelengths to produce the brilliant blue. To create that same blue out of pigment would require much more energy—energy better used for flying, feeding and reproducing.

Miles wondered if this capability could be exploited in some way. Where else might you want incredibly vivid color in a thin package? Of course: in an electronic device display. Qualcomm, which acquired the company Miles had formed to develop the technology, used it in its Mirasol display. “We exploit the phenomena of optical interference,” says Brian Gally, senior director of product management at Qualcomm. Lurking beneath the glass surface is a vast array of interferometric modulators, essentially microscopic (10 to 50 microns square) mirrors that move up and down, in microseconds, to create the proper color.

Like the butterfly’s wings, “the display is taking the white ambient light around us, white light or sunlight, and through interference is going to send us back a color image,” Gally says. Unlike conventional LCD screens, the Mirasol doesn’t have to generate its own light. “The display brightness just automatically scales with ambient light.” As a result, the Mirasol consumes a tenth of the power of an LCD reader. Qualcomm used the display in an e-reader and is offering it for license to other companies.

Though biomimicry has inspired human innovations for decades—one of the most often-cited examples is Velcro, which the Swiss engineer Georges de Mestral patented in 1955 after studying how burs stuck to his clothes—better technology and more nuanced research have enabled increasingly complex adaptions. Design software created by German researcher Claus Mattheck—and used in Opel and Mercedes cars—reflects the ways trees and bones distribute strength and loads. A fan created by Pax Scientific borrows from the patterns of swirling kelp, nautilus and whelks to move air more efficiently. A saltwater-irrigated greenhouse in the Qatari desert will use condensation and evaporation tricks gleaned from the nose of a camel. Now, thanks in part to continuing innovations in nanoscale fabrication, manufacturers are bringing an expanding array of products to market.

Biomimicry isn’t itself a product but a process, drawing on natural organisms and processes in order to spark innovation. Organizations and even cities can look to ecosystems for inspiration, says Tim McGee, a biologist and member of Biomimicry 3.8, a Montana-based consultancy. In Lavasa—described as “India’s first planned hill city” by its developers, who hope to eventually build homes for more than 300,000 people there—the guild consulted with landscape architects. Thus the planting strategy included deciduous trees, forming a canopy to catch, and then reflect, through evaporation, nearly a third of the monsoon rain that hits it. That effect acts “like an engine that drives the monsoon inland,” says McGee, which helps prevent drought there. The hydrodynamically efficient shape of banyan tree leaves influenced the design of a better water-dispatching roof shingle, while water divertment systems were inspired by the ways harvester ants direct water away from their nests. The first Lavasa “town” has been completed, with four more projected to follow by 2020.

Written By: By Tom Vanderbilt
continue to source article at smithsonianmag.com

7 COMMENTS

  1. If religion is a miracle, it doesn’t need Science. It doesn’t need facts and it can miraculously survive on it’s own. Whenever religion tries to prove itself scientifically, I couldn’t help but question if an omnipotent god does exists, he doesn’t need science, he can defy logic, biology, physics the same way a bird without wings can be made to fly. Things can simply be anyway he wants it. Proving whether a god exists or not doesn’t contribute to humanity’s existence and their well being. However, proving and disproving theories and evidence in Science does lead mankind to greater things for the welfare of all.

  2. By the way, some months ago, Ray Comfort had planned to publish a new book he wanted to call “Theft! Stealing God’s Design” about all the items scientists and technicians came up with by creating similar (or better) products as nature.
    Comfort’s book, scheduled to come out in April 2012,  never saw publication. To some readers of Comfort’s blog, where he pre-published some of the chapters (now all deleted), it had occurred that he might be plagiarising once again. This hunch turned out to be accurate through a few quick google searches. We contacted some of the original authors, publishers and editors to notify them that Comfort was planning to use their work commercially, apparently without permission, as he had attributed or referenced none of “his” chapters to any other sources.This is extra hilarious, as Comfort is known for his “Good Person Test” where he tells people that ever stealing anything at all, at any age and for any reason, is a sin by the Ten Commandments and will “justly” send a person to Hell. According to Comfort and much mainstream Christian doctrine, forgiveness for sin requires repentance of the sinner. Such repentance is of course only sincere if the deed (or sinful thought) isn’t deliberately repeated at the next opportunity. How does Ray reconcile this with “writing” an entire book consisting almost totally of illegally copied articles? After he had already been caught plagiarising for his “Origin of Species” introduction and numerous small blog posts?A few fragments of his plagiarised (or copied from wikipedia, which is still plagiarism if it’s done without permission and commercially) posts survive, as many more or less witless evangelists like to mirror his posts: http://www.worldviewweekend.co
    http://raycomfortfood.blogspot
    More on Ray’s failed project, with plenty of his posts saved as evidence can be found at: http://www.wearesmrt.com/bb

  3. It is likely W. Edwards Deming was influenced by Darwin in his ideas of how to run corporations and refine products.  Tony Robbins expresses the idea as CANI Constant And Never-ending Improvement through small increments.

  4. Most engineering structures can be found in nature if you look for them.  Quite often man-made products start as crude copies of the evolved natural form.  ( eg. man-made fibres, roof tiles, helicopter rotors, cameras, roads)

Leave a Reply