Revealing the secrets of motility in archaea

3

(Phys.org)—The protein structure of the motor that propels archaea has been characterized for the first time by a team of scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Germany’s Max Planck Institute (MPI) for Terrestrial Microbiology.
The motility structure of this third domain of life has long been called a flagellum, a whip-like filament that, like the well-studied bacterial flagellum, rotates like a propeller. But although the archaeal structure has a similar function, it is so profoundly different in structure, genetics, and evolution that the researchers argue it deserves its own name: archaellum. 
This unique motor is highly conserved in all motile archaeal species. Its structure most resembles that of the bacterial Type IV pilus, the filamentary “grappling hook” by which bacteria attach to surfaces and pull themselves along – and which is responsible for pathogenicity in many bacteria, including deadly strains of E. coli. 
Since archaea may also be important players in the microbiota of the human gut, knowing the archaellum’s structure will help scientists understand how archaea interact with human cells. The Berkeley Lab-MPI research team reports its findings in the journal Molecular Cell.

Finding the key protein 
Sulfolobus acidocaldarius was the model organism used in the analysis, says the research team’s co-leader Sonja-Verena Albers, who heads the MPI’s Molecular Biology of Archaea research group, “because this is one of the few well established model systems in which genetics works well. We have the genetic tools to mutate and precisely modify the Sulfolobus genome. We can combine in vivo experiments with the atomic structure of our proteins to see the effect of modifications.” 
A protein called FlaI (pronounced “flah-eye”) was a leading candidate for archaella assembly and rotation, but the team had to find proof. FlaI is an ATPase – an enzyme that releases energy from adenosine triphosphate, or ATP – and was known to be involved in the assembly and function of Type IV pili in bacteria and the secretion of proteins in many microorganisms. But FlaI’s role in archaella was uncertain.
Written By: PhysOrg
continue to source article at phys.org

3 COMMENTS

  1. I flicked through the RDF latest and was brought here by misreading ‘motility in archaea’ as ‘morality in archaea’, which would have been a great discovery and would show that religion is not the origin of all moral behaviour, though we would doubtless soon be hearing that archaea display what creationists would surely describe as ‘worship like behaviours’ prior to the demonstations of altruism that this article would have been about, if it had been about what I originally thought it was. All irrelevant (or should I say irreducibly complex) now, but it is great to see proper science getting coverage. I think I need a bit of a lie down now.

Leave a Reply