Same gene linked to bigger brains of dolphins and primates


Every whale and dolphin evolved from a deer-like animal with slender, hoofed legs, which lived between 53 and 56 million years ago. Over time, these ancestral creatures became more streamlined, and their tails widened into flukes. They lost their hind limbs, and their front ones became paddles. And they became smarter. Today, whales and dolphins – collectively known as cetaceans – are among the most intelligent of mammals, with smarts that rival our own primate relatives.

Now, Shixia Xu from Nanjing Normal University has found that a gene called ASPM seems to have played an important role in the evolution of cetacean brains. The gene shows clear signatures of adaptive change at two points in history, when the brains of some cetaceans ballooned in size. But ASPM has also been linked to the evolution of bigger brains in another branch of the mammal family tree – ours. It went through similar bursts of accelerated evolution in the great apes, and especially in our own ancestors after they split away from chimpanzees.

It seems that both primates and cetaceans—the intellectual heavyweights of the animal world—could owe our bulging brains to changes in the same gene. “It’s a significant result,” says Michael McGowen, who studies the genetic evolution of whales at Wayne State University. “The work on ASPM shows clear evidence of adaptive evolution, and adds to the growing evidence of convergence between primates and cetaceans from a molecular perspective.”

For decades, we’ve known that similarities between primate and cetacean intelligence run deep. For a start, both groups have members with unusually big brains. We humans have brains that are 7 times bigger than you’d expect for an animal of their size. The equivalent number is 2-3 for chimps and some monkeys, and 4-5 for some dolphins.

Over the last decade, scientists have identified seven genes that are linked to primate brain size. They’re called MCPH1 to MCPH7 (ASPM is the fifth in the line). Faults in these genes can lead to microcephaly – a developmental disorder characterised by a debilitatingly small brain.

McGowen had already shown that, unlike in humans, MCPH1 doesn’t neatly correlate with brain size in cetaceans. Xu wanted to see if ASPM would be more interesting. He sequenced the gene in fourteen species of cetaceans, from the bottlenose dolphin to the minke whale. He then compared these to known sequences from 18 other mammals, including several primates and the hippopotamus (the closest living relative to cetaceans).

Written By: Ed Yong
continue to source article at


  1. I take it this gene appeared in some common ancestor to humans and dolphins — way way back before any super-large brain animals.

    Large-brainedness seems to explode in evolutionary time.  Perhaps there are other larger brain creatures much further back that exploded onto the stage and quickly went extinct before creating a decent fossil record.
    I asked a paleontologist friend, “If there were a technological species way back before humans, what could we expect to find today as evidence of their existence?”.  She said “bricks and roads”. Those of course might be dismissed as human artifacts if examined only casually.

  2. It think it was a case of convergent evolution, where similar mutations occurred on the same gene at different times.

Leave a Reply